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Abstract: Control systems implemented by distributed embedded nodes require additional 
coordination and management services. Despite the fact that most of these coordination 
services are similar across different applications the proliferation of embedded platforms 
renders it almost impossible to provide these software components in a uniform way. We 
propose a model based embedded programming approach for specification of individual 
middleware services at the algorithm level that supports automatic code synthesis for 
different embedded platforms while making sure that only services with compatible 
interfaces are used. These executable models allow more extensive analysis of temporal 
behavior, thus provides better support for composition and compatibility checking between 
software components. The paper also describes the Distributed Services Composition and 
Synthesis Technology tool, the prototype implementation of our modeling language 
capable to generate code for three different platforms: a Java based I/O automata simulator, 
a resource constrained embedded operating system and a CORBA based control platform. 
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1 Introduction 

Global services required by distributed sensor and control systems range from simple 
event- and time-based coordination to complex algorithms for spanning tree formation, 
clock synchronization, leader election, protocols for distributed consensus, distributed 
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transactions and others. These services go beyond the usual capabilities provided by 
network protocols and they might be originated by different groups with different expertise. 
Because of resource limitations a complex monolithic middleware layer that contains all 
services for all applications is not feasible. Moreover, the wide range of programming 
languages and component frameworks necessitates the repeated implementation of the 
same algorithms. To meet these challenges new software engineering techniques and tool 
support is required that enable the decoupling of embedded software design from 
implementation concerns and support composition and run-time compatibility checking of 
software components. 

Different levels of abstraction can be used to describe an algorithm. This level of 
abstraction determines the strength of the language considering its verification, 
composition and platform independent capabilities.  Our highly abstract structural automata 
language merges the formalisms of executable models (implementabilty), interface 
automata (optimistic approach to composition) [Henzinger 2001], and I/O automata 
(nondeterministic execution order). 

2 Structural I/O automaton 

Our notation and definitions are based on the I/O automata language [Lynch 1997]. 
First, we give the general definition of a structural I/O automaton, than we will introduce 
basic automata serving as building blocks along with compositional operations to obtain 
more complex automata. A structural I/O automaton A consists of eight components: 

 
• acts(A), a structured set of actions 
• states(A), a structured set of states 
• start(A), a nonempty subset of states(A), known as start states 
• trans(A), a state-transition relation, where trans(A) ⊆ states(A) × acts(A) × 

states(A) 
• in(A), a set of data ports of the set acts(A) 
• out(A), a set of data ports of the set acts(A) 
• data(A), a set of data ports of the set states(A) 
• tasks(A), a task partition on acts(A). 

 
The scope and space limitations of the current publication do not allow to cover the 

full language in detail, the rest of the paper aims at giving an informal description of the 
concepts above. For precise mathematical definition of structural I/O automaton see 
[Maróti 2003].  

Actions represent signals – with optional parameters – accepted or generated by the 
automaton. The input actions are generated by the environment and transmitted 
instantaneously to the automaton. An automaton is not able to somehow “prevent” input 
actions from occurring. 

The collection of all possible configurations of an automaton is represented by its state 
space, states(A). The initial configuration within this space is described by start(A). Just 
like with Finite State Machines (FSM), the original I/O automata have key weakness in 
their simple flat form: the number of states and the state-transitions can get quite large even 
for moderately complex systems. Such models quickly become chaotic and 



  

incomprehensible when one tries to understand abstract I/O automata, hence we describe 
the sets of states and actions in structured form. Structured sets are defined recursively: 

 
• The domain of basic data types are structured sets 
• Finite products of structured sets are structured 
• Disjoint unions of structured sets are structured 
• Finite powers of structured sets are structured 
• The Kleene1 star of structured sets is structured 

 
We classify the structured sets into five types, called variables, products, unions, 

arrays and queues, according to the above rules, respectively.  
To overcome the problem of accessing state variables and action parameters in deeply 

nested data structures we introduce data ports. The purpose of these ports is twofold. First, 
it provides controlled access to the data structure, exporting only relevant parts of it. 
Second, a port may exercise specific constraints on its supervised state space. A data port 
can be read if these constraints are satisfied by the current configuration of the state space. 
Writing to the data port is always possible, however – as a side effect of the write operation 
– the port will bring the current state of the automaton to fulfill all defined constraints. 

An action can accompany a state transition, where upon the transition a shift is made 
to a new state. To achieve platform and programming language independence, we limit the 
complexity of the specification of these transitions: 

 
transition (arg1, … , argn) 

Precondition: 
cond1 (par1, … , parn, var1, … , varm) 

… 
condk (par1, … , parn, var1, … , varm) 

Effect: 
varm+1 = expr1 (par1, … , parn, var1, … , varm) 

… 
varm+l = exprl (par1, … , parn, var1, … , varm) 

 
where par1, … , parn are action parameters and var1, … , varm+l are state variables 

accessed through data ports as described above, cond1, … , condk are simple comparisons 
(the allowed relations are: =, <, > or <>) and  expr1, … , exprl are basic expressions using 
only simple arithmetic operators. These simple conditions and basic expressions enable us 
to generate source code for a wide range of programming languages. 

The most basic I/O automaton is the Variable, which can store a single value of a 
simple data type T. The state space of the variable is therefore {T}, that is accessible 
through the data port, and the start state is one possible value of the data type. 

To add new state transitions to an automaton we use the Activator operation, which 
may introduce new actions and action data ports. The Product and Union operations enable 
us to compose a finite list of existing automata into one. We also defined an Array 
operation as a shorthand notation of repeated use of the product operation. 

                                                            
1 The union of all finite powers of a set: {0} ∪ A ∪ A2 ∪ … 



  

3 Case study 

The Distributed Services Composition and Synthesis Technology (DISSECT) tool is 
our prototype implementation of the structural I/O automata language and provides a 
design environment for embedded software development. The tool was constructed by 
configuring the Generic Modeling Environment (GME) framework with the metamodel of 
the language. The metamodel is a set of syntactic, semantic and presentation information on 
the concepts of our domain, the relationships among them, and how these concepts should 
be visualized [Lédeczi 2001]. 

To demonstrate the expressiveness of the language we have built a highly distributed 
tracking application running on the UC Berkeley mote platform [Hill 2000], where a 
homogenous network of intelligent sensors attempts to localize a moving beacon. The 
beacon periodically broadcasts a radio message and emits a sound signal for half a second. 
Those sensors whose microphones picked up the sound, compute a distance to the beacon 
based on the measured time of flight of the sound signal. Some of the components in the 
model represent operating system components, only the interfaces of these are modeled. 
The most important component of the system is the tblmgr automaton, which maintains a 
table containing the latest measurement results of all trackers in the network. This table is 
updated if the node itself has measured a new distance or one of its neighbors has sent an 
update ticket. All nodes should broadcast their table changes periodically in update tickets. 
The source code of the entire tracking application is automatically generated, and ready to 
run on the embedded sensors.  

The provided middle service is not specific to acoustic tracking, but can be used in 
other applications as well – like structural vibration damping – where information 
spreading must be implemented. We believe that the formal specification of these generic 
services enables us to use them as safe building blocks in future applications. 
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